5V = 5 spezifische Herausforderungen für Big Data

Im letzten Artikel zum Thema Big Data haben wir gelernt, was unter diesem Begriff zu verstehen ist und dass es sich dabei um weit mehr als nur um einen Marketingbegriff handelt. Zur Definition des Phänomens wurden die in der Wissenschaft häufig verwendeten fünf V’s – Volume (Datenvolumen), Velocity (Geschwindigkeit), Variety (Datenvielfalt), Veracity (Korrektheit der Daten) und Value (Nutzen) – herangezogen.

Jede dieser charakterisierenden Eigenschaften bringt ganz eigene Herausforderungen mit sich, die im Big Data Umfeld gelöst werden müssen.

Volume

Eine der offensichtlichsten Herausforderungen, welche sich aus dem Menge der Daten ergibt, ist die Frage nach der Speicherung. Je größer das Volumen, desto mehr Speicherplatz wird benötigt, um die Daten effizient abzulegen. Klassische Datenbanksysteme sind darauf nicht ausgelegt. Neue Technologien werden benötigt. Ebenso stellt die Verarbeitung dieser Datenmengen eine nicht zu unterschätzende Herausforderung dar. Ein Großteil der klassischen Analyseverfahren ist sowohl in Bezug auf den Speicher, der für die Ausführung benötigt wird, als auch auf die Verarbeitungsgeschwindigkeit nicht darauf ausgelegt. Die Folge sind deutliche Performance Einbußen.

Velocity

Auch die Geschwindigkeit bringt gleich mehrere Herausforderungen mit sich, da es nicht nur darum geht, die Daten möglichst schnell zu verarbeiten. Um zeitnah auf Veränderungen reagieren zu können, müssen die Daten möglichst aktuell sein. Echtzeit Entscheidungen bedingen eine hohe Geschwindigkeit mit der die Daten generiert, verarbeitet und übertragen werden. Darüber hinaus muss sichergestellt werden, dass Daten in ihrer Bedeutung nicht veraltet sind und dadurch falschen Interpretationsspielraum eröffnen.

Variety

Je größer die Vielfalt der Datenarten ist, umso komplexer wird deren Verarbeitung und Speicherung. Ein Großteil der klassischen Systeme ist nur auf die Ablage und Analyse strukturierter Daten ausgelegt. Für die Vielfalt der Datenarten, die nun durch Big Data generiert werden, benötigt es neue Ablage- und Verarbeitungsmöglichkeiten. Die Komplexität bezieht sich jedoch vor allem auf die notwendigen Vorarbeiten, die mit der Verarbeitung und Integration von unstrukturierten Daten einhergehen.

Veracity

Je größer die Menge an Daten ist, desto größer ist zudem die Gefahr, dass diese verunreinigt, fehleranfällig oder ungenau sind. Da die Qualität der Daten einen erheblichen Einfluss auf die Qualität der Analyseergebnisse hat, ergibt sich aus der Fehleranfälligkeit eine weitere Herausforderung. Gute Entscheidungen können nur dann getroffen werden, wenn die zugrundeliegenden Daten von guter Qualität sind. Diese Qualität basiert auf verschiedene Faktoren wie Vollständigkeit, Korrektheit und Zuverlässigkeit. Durch die Masse an Daten, die Geschwindigkeit mit der sie generiert und verarbeitet werden, sowie die Anforderung an die schnelle Bereitstellung, wird es immer schwerer zu prüfen, ob diese vollständig und korrekt sind.

Weitere Herausforderungen, welche nicht unbedingt technologischer Art sind, sind Datenschutz und Datensicherheit. Der europäische Datenschutz sieht vor, dass alle personenbezogenen Daten einer Zweckbindung unterliegen müssen. Richtsätze der Datenvermeidung und Datensparsamkeit müssen beachtet werden, was bedeutet, dass bereits vor der Erhebung darauf geachtet werden muss, dass die persönlichen und sensiblen Daten auf ein Minimum beschränkt werden. Zudem ist das Prinzip der Transparenz zu beachten, welches aussagt, dass jede Person die Möglichkeit haben muss, zu erfahren, welche Daten über sie erhoben werden, aus welchem Grund und wie lange sie gespeichert werden.

Es ist notwendig, eine Data Governance aufzubauen und zu etablieren, um Betrug und Manipulation von Daten zu verhindern. Darunter versteht man ein Regelwerk von Vorgaben zur ordnungsgemäßen Verwaltung digitaler Daten in einem Unternehmen. Beispielsweise wird darin festgelegt, wie Daten abgelegt werden sollen, so dass sie sicher aber trotzdem leicht zugänglich sind. Es wird bestimmt, wer für welche Informationen zuständig ist oder wie mit den Daten umgegangen werden soll. In Anbetracht der Datenvolumen, welche erhoben werden, ist es allerdings schwierig, diese Grundsätze konsequent einzuhalten.

Value

Die größte Herausforderung liegt jedoch darin, einen wirklich nützlichen Geschäftswert aus dem Einsatz von Big Data zu ziehen. Die eigentliche Idee hinter der Verarbeitung von Big Data ist es, konkrete Antworten auf konkrete Fragestellungen zu finden und einen Mehrwert daraus zu ziehen. Es geht darum, die richtigen Fragen zu stellen und sich über die Ziele, welche man erreichen möchte, klar zu werden. Welche Probleme gibt es, die adressiert werden müssen? Welche Chancen, die ergriffen werden können? Erst wenn man sich über das im Klaren ist, was man erreichen möchte, und Use Cases identifiziert hat, kann man den Wert von Big Data nutzen.

Der Wert von Big Data

euro-447209_1920-768x512Der Wert, der sich aus dem Einsatz ergibt, bezieht sich in den meisten Fällen auf die Erlangung von Wettbewerbsvorteilen, die Generierung von Einsparungspotenzialen, die Optimierung von Geschäftsprozessen oder auf die Schaffung neuer Geschäftsmodelle. Mit Big Data können Unternehmen früher auf Markt-Veränderungen reagieren. Sie können sich schneller als der Wettbewerb auf Veränderungen einstellen und so einen Wettbewerbsvorteil sichern. Als Beispiel seien hier Nachfragetrends genannt, welche durch Unternehmen anhand der Analyse von Suchanfragen oder Posts in sozialen Netzwerken frühzeitig erkannt werden können. Darüber hinaus kann auf bedrohliche Ereignisse früh genug reagiertund größere Schäden vermieden werden.

Weiterhin hält der Einsatz von Big Data gerade im Marketing- und Vertriebs-Sektor große Potenziale bereit. Um Kunden an sich zu binden, ist es notwendig, diese genau zu verstehen, um besser auf ihre Wünsche eingehen zu können. Helfen kann dabei vor allem die Erstellung von Bewegungs-, Kauf- und Persönlichkeitsprofilen. Durch die Analyse solcher Daten können zielgruppengerechte Werbemaßnahmen geschaltet und so die Kosten für Marketingkampagnen gesenkt werden. Eine direkte, persönliche Ansprache von Kunden kann deren Kaufentscheidungen maßgeblich beeinflussen. Zu wissen, welche Bücher ein Kunde bisher gekauft hat, über welche Themen sich dieser informiert, wo und wie er lebt, kann einem digitalen Buchhändler helfen, die Bücher vorzuschlagen, die der Kunde als nächstes lesen möchte. Darüber hinaus kann durch die Erfassung des Verhaltens erkannt werden, was Kunden mögen, worauf aufbauend neue Produkte oder Geschäftsmodelle entwickelt werden können.

Die Kombination der Möglichkeit der Echtzeitverarbeitung von Daten aus unterschiedlichsten Datenquellen – wie verschiedenen Sensoren – mit darauf angewendeten prädiktiven Analyseverfahren, erlaubt es beispielsweise Produktionsunternehmen, bevorstehende Maschinenausfälle frühzeitig vorherzusagen. Eine vorausschauende Wartung wird ermöglicht, wodurch teure reaktive Maßnahmen der Vergangenheit angehören.

Unternehmen der Handelsbranche können durch die Kombination der Daten über eigene Warenbestände mit Trenddaten aus sozialen Netzwerken bedarfsorientierte Warenbestellungen ausführen. Die optimale Auslastung von Warenlagern sowie die Durchführung von optimierten Logistikprozessen, beispielsweise in der Belieferung von Produktionsstätten, sind ebenfalls Potenziale von Big Data.

Aber auch in ganz anderen Unternehmensbereichen lässt sich Geschäftswert generieren. So kann beispielsweise die Motivation von Mitarbeitern verbessert werden, indem Gründe für Burnout-Raten identifiziert und beseitigt werden. Gleichzeitig können Faktoren erkannt und verstärkt werden, die zu einer Steigerung der Motivation führen.

Darüber hinaus ermöglicht der Einsatz von Big Data die Entwicklung neuer Geschäftsmodelle, welche vorher nicht denkbar waren. So ist es beispielsweise möglich, eine Massenindividualisierung von Produkten durchzuführen. Dazu benötigt es ein intelligentes System, welches während der Eingabe von Informationen durch einen Benutzer Angebote oder Informationen erstellt, die speziell auf diesen ausgerichtet sind. Als Beispiel seien hier personenbezogene Versicherungsprodukte oder tägliche Gesundheitsdiagnosen genannt. Hersteller von Produktionsanlagen können ihr Angebot des reinen Verkaufs von Anlagen um das Monitoren und Warten derselben aus der Ferne und damit einhergehend um ein Serviceangebot erweitern.
Was müssen Unternehmen tun?

Bezogen auf die Wirtschaft gilt: Unternehmen müssen bereit sein, neue Informationen heranzuziehen, um neue Erkenntnisse gewinnen zu können. Auf den ersten Blick belanglos erscheinende Informationen können in Kombination mit anderen Daten wertvolle Einblicke . Es ist die Vielfalt der Daten, die scheinbar nicht zusammenhängende Einzelinformationen, in einem neuen Kontext wichtig werden lässt. Das ist der Kern von Big Data.

Die größte Herausforderung von Big Data liegt allerdings nicht im Sammeln und Verarbeiten der Daten, sondern darin, für das eigene Unternehmen daraus einen realen Geschäftswert zu ziehen. Das bedeutet, dass Unternehmen sich zunächst über die eigenen Ziele, bewusst werden müssen. Diese Ziele können herangezogen werden, um Fragestellungen, die durch die Verwendung von Daten beantwortet werden können, zu finden und damit einhergehend Geschäftsszenarien zu identifizieren. Dies sollte Ausgangspunkt einer Big Data Strategie in jedem Unternehmen sein.

Wie Sie Use Cases und dadurch das Potenzial von Big Data für Ihr Unternehmen identifizieren können, aber auch, was Sie im Rahmen weiterer notwendiger Schritte in Bezug auf die Auswahl von Daten, die Selektion von Analysenverfahren, die Kommunikation von Analyseergebnissen sowie die letztendliche Transformation des Geschäfts beachten sollten, können Sie in unserem am 6.11. stattfindenden Webinar über die SMART-Methode nach Bernard Marr erfahren.

Betrachten Sie auch unseren Webinaraufzeichnung zum Thema

Weitere interessante Beiträge: